Methylation of Lead(II) and Methyllead(IV) Compounds in Water by a *Trans*-dimethylcobalt(III) Complex SPYRIDON RAPSOMANIKIS, JOSEPH J. CIEJKA and JAMES H. WEBER* University of New Hampshire, Chemistry Department, Parsons Hall, Durham, N.H. 03824, U.S.A. Received February 27, 1984 A factorial experiment determined separate and combined effects of $[(CH_3)_2Co(N_4)]ClO_4 \cdot H_2O$ (I) (a methylcobalamin model and carbanion donor), CH_3I (a carbocation donor) and MnO_2 (an oxidizing agent) on the methylation of Pb^{2+} in aqueous systems. $(CH_3)_4Pb$ occurred only in the presence of (I). Methylation of $(CH_3)_2Pb^{2+}$ and $(CH_3)_3Pb^+$ by (I) under similar conditions, produced high yields of $(CH_3)_4Pb$. Deuterium labelled (I) demonstrated the mechanism of CH_3^- transfer to both methyllead(IV) electrophiles. #### Introduction Several reports in recent years are concerned with environmental methylation of lead [1-4]. Interest in this process derives from increased toxicity of methyllead compounds, compared to their inorganic counterparts [5]. In vitro experiments with biologically active sediments failed to produce conclusive evidence about the ubiquity of the process [6-9]. However methylation studies in aqueous abiotic under model environmental conditions have provided important information about the possible mechanism of such a process in the natural environment [10-13]. Formation of methyllead compounds may proceed via the initial attachment of a methyl group to lead-(0), lead(II), or lead(IV) compounds with subsequent methyl groups originating from the same methyl donor or from dismutation of the original methyllead species. In eqns. 1–5 and 7 CH₃⁺ and CH₃⁻ denote, respectively, carbocation and carbanion donors. $$Pb^{o} + 2CH_{3}^{+} \longrightarrow (CH_{3})_{2}Pb^{2+}$$ (1) $$Pb(II) + CH_3^+ \longrightarrow (CH_3)Pb^{3+}$$ (2) $$Pb(II) + 2CH_3^- \longrightarrow (CH_3)_2 Pb$$ (3) $$(CH_3)_2 Pb^{2+} + 2CH_3^- \longrightarrow (CH_3)_4 Pb$$ (4) $$(CH3)3Pb+ + CH3- \longrightarrow (CH3)4Pb$$ (5) $$2(CH3)Pb3+ \longrightarrow (CH3)2Pb2+ + Pb(IV)$$ (6) $$2(CH_3)_2Pb^{2+} \longrightarrow (CH_3)_3Pb^+ + Pb^{2+} + CH_3^+$$ (7) $$2(CH_3)_3Pb^+ \longrightarrow (CH_3)_4Pb + (CH_3)_2Pb^{2+}$$ (8) $$2(CH_3)_2Pb \longrightarrow (CH_3)_4Pb + Pb^o$$ (9) Mono- and dimethyllead(II) (eqn. 3) species have not been isolated although they are probably intermediates in the formation of (CH₃)₄Pb and Pb° in acetonitrile [14] (eqn. 9). Similarly unknown CH₃Pb³⁺ (eqn. 2) forms (CH₃)₂Pb²⁺ [9] (eqn. 6). Carbocation donors such as CH₃I or carbanion donors such as [(CH₃)₂Co(N₄)]ClO₄·H₂O (I)** can effect methyl transfers. Two groups [10, 12] have reported (CH₃)₄-Pb from the reaction of CH₃I with Pbo in water. Similar reactions with lead(II) salts yield only (CH₃)₂-Pb²⁺ as detectable methyllead product. Reactions of (I) with lead(II) and methyllead(IV) ions in acetonitrile [14] and of methylcobalamin with PbO₂ in water [15] both yield (CH₃)₄Pb by a CH₃ transfer process. Thayer [16] reported demethylation of methylcobalamin by methyllead(IV) compounds but did not identify (CH₃)₄Pb. Other workers also failed to identify methyllead products from the above reaction [6, 9, 17]. At present there is uncertainty about the mechanims of methyl transfer to Pb(II) or Pb(IV) species in aqueous media, and the possible pathways (eqns. 2-9) require extensive study. In this work we describe the separate and combined effects of carbanion (complex (I)) and carbocation (CH₃I) donors on methylation of lead(II) in the presence or absence of the MnO₂ oxidizing agent. We also investigated (CH₃)₄Pb formation from reactions of (I) with (CH₃)₂PbCl₂ and (CH₃)₃PbCl. These reactions are important because they would demonstrate that nucleophilic attack on products of oxidative addition ^{*}Author to whom correspondence should be addressed. ^{**} (N_4) is an abbreviation for 2,3,9,10-tetramethyl-1,4,8,-11-tetrazacyclotetradeca-1,3,8,10-tetraene. reactions (eqns. 1, 2) by naturally occurring carbanion donors would ultimately produce air transportable, hydrophobic, and toxic $(CH_3)_4$ Pb. Such processes would complement dismutation of $(CH_3)_2$ M²⁺ and $(CH_3)_3$ M⁺ (M = Sn, Pb) species that might take place in the environment in the presence of sulphur and oxygen ligands [6, 18–20]. ## Experimental Synthesis All reagents were obtained commercially and used without further purification unless otherwise stated. [Co(N₄)Cl₂]ClO₄·H₂O was synthesized by a variation of a literature method [21]. Typically 1,3diaminopropane 2HCl (11.76 g, 80 mmol) in 30 cm3 dry methanol was cooled to 2 °C and 2,3butanedione (7.0 g, 80 mmol) in 20 cm³ dry methanol was added. The slurry was constantly stirred and KOH (4.48 g, 80 mmol) in 70 cm³ dry methanol was added slowly, while ensuring that the temperature never exceeded 5 °C. After 30 min a solution of Co(O₂CCH₃)₂·4H₂O (10 g, 40 mmol) in 300 cm³ dry methanol was added. The reaction mixture was stirred at room temperature for 15 h, filtered, and $NaClO_4 \cdot H_2O$ (5.62 g, 50 mmol) in 40 cm³ dry methanol was added to the filtrate. The resulting gray-green powder was filtered, washed with dry methanol, and dissolved in 300 cm³ acetonitrile. Concentrated HCl (9 cm³) was added and crystallization of green [Co(N₄)Cl₂]ClO₄ occurred after slow room temperature evaporation of the solvent to half its original volume (30% yield). Pure [Co(N₄)Cl₂]ClO₄ (1.9 g, 4 mmol) was dissolved in a 50/50 mixture of 300 cm³ acetone and dry methanol while stirring and heating to 50 °C. The mixture was filtered and protected from light. First 3 cm³ iodomethane (46 mmol) and then sodium borohydride (0.4 g, 1 mmol) dissolved in the minimum amount of water was added dropwise to the filtrate. After 5 min NaClO₄·H₂O (0.4 g, 3 mmol) in methanol was added, and the red solution was reduced to 30 cm³ by rotary evaporation at room temperature. A 24% yield of bright red crystals was isolated after cooling to 0 °C for 15 h. [(CD₃)₂Co-(N₄)]ClO₄·H₂O was prepared similarly, using CD₃I. Both complexes were analyzed by elemental analysis and UV spectroscopy. Manganese dioxide suspension was prepared according to a literature method [22]. Tetraethyllead in toluene from Ethyl Corp. was standardized by dissolving 0.15 g of the toluene/ (CH₃)₄Pb mixture in 10 cm³ of saturated bromine water, boiling with 50 cm³ of 1.0 M nitric acid, and titrating with EDTA [23]. Trimethyllead chloride, obtained from Ethyl Corp. was purified by sublimation. Dimethyllead(IV) chloride was prepared by a literature method [24]. UV-Visible Spectra Spectra were recorded on a Cary Model 219 or 14 Spectrophotometer. Spectral titrations were carried out by placing 2.8 cm³ aliquots of 1×10^{-4} M solution of (I) in 1 cm quartz cells, injecting predetermined amounts of standardized lead solutions, and monitoring absorbance decreases at 436 nm due to the demethylation of (I). Concentrations of aqueous (I) solutions were determined by UV–Visible spectrophotometry ($\lambda_{max} = 436$ nm; $\epsilon = 6800$ cm⁻¹ M⁻¹ [25]). GC Analysis Reactions were carried out in the dark at room temperature in 50 cm³ of aqueous solutions in 60 cm³ vials sealed with silicon rubber septa. Ionic strength of the reaction media was 0.1 M KNO₃ for Pb2+ experiments and 0.1 M KCl for (CH3)2-PbCl₂ and (CH₃)₃PbCl experiments. Head space gases were analyzed after 3 h by sampling with a 0.5 cm³ gas tight syringe and injecting in a Varian 3700 gas chromatograph with a flame ionization detector (GC-FID). Quantitation of (CH₃)₄Pb was carried out by injecting head space of standards and comparing retention times and peak areas. Reaction products were also identified by mass spectrometry. Methane evolution was quantified using standards produced from the acid hydrolysis of (CH₃)₂Co(1-N₄), which yields one mol of CH₄ per mol of complex [26]. A Hewlett-Packard 3390A integrator calculated peak All analyses were carried out in triplicate with peak area relative standard deviation varying between 1.2-23.4% for CH₄ and 0.8-5.6% for (CH₃)₄Pb. The column used for all analyses was a glass column (1,800 mm length, 4 mm i.d.) packed with 10% SP-2100 on Supelcoport 80–100 mesh W-AW-DMCS support. It was kept isothermally at 70 °C with the injection port and detector temperatures at 100 °C. The carrier gas (N₂) flow rate was 30 cm³ min⁻¹ and retention times for CH₄ and (CH₃)₄Pb were 0.64 min and 4.95 min, respectively. ## Mass Spectrometry Mass spectra were recorded on a Hitachi-Perkin Elmer Model RMU60E mass spectrometer and processed by an Apple IIe microcomputer. Head space gases (1 cm³) were injected directly in the liquid inlet. #### Results and Discussion Most electrophiles react with (I) by methyl transfer to form solvated $(CH_3)Co(N_4)(SOLV)^{2+}$ (eqn. 10). The second methyl group of (I) does not react $$(CH_3)_2Co(N_4)^+ + E^+ \longrightarrow CH_3E + (CH_3)Co(N_4)(SOLV)^{2+}$$ (10) with lead electrophiles under the experiment conditions. Reactions of lead electrophiles and (I) in various electrophile/(I) mol ratios monitored by visible spectroscopy indicate the approximate times of complete transfer of the first methyl group (eqn. 10). The Pb^{2+} reaction in 1/1 or 1/4 ratios is complete in 2 min. The $(CH_3)_2Pb^{2+}$ and $(CH_3)_3Pb^+$ reactions in 1/4 ratios likewise take 2 min. In contrast the half-life of (I) in water in the absence of lead electrophiles is 24 h, and the products are solvated $(CH_3)Co(N_4)^{2+}$ and CH_4 . We carried out spectral titrations to determine stoichiometries of the methyl transfer reactions. Endpoint values for Pb²⁺ were 0.6 to 0.7 Pb²⁺/complex (I). This ratio suggests that Pb²⁺ obtains its first methyl from (I) (eqn. 11), but acceptance of the second methyl from another mol of (I) (eqn. 12) is incomplete. If only reaction 11 occurs, the ratio should be 1/1; if reactions 11 and 12 both $$(CH_3)_2Co(N_4)^+ + Pb^{2+} \longrightarrow (CH_3)Pb^+ + (CH_3)Co(N_4)(H_2O)^{2+}$$ (11) $$(CH_3)_2Co(N_4)^+ + (CH_3)Pb^+ \longrightarrow (CH_3)_2Pb + (CH_3)Co(N_4)(H_2O)^{2+}$$ (12) occur, the ratio should be 1/2. The 0.6-0.7 endpoint suggests that reaction 11, but not reaction 12 is complete. Possibly some $(CH_3)Pb^+$ reacts by a different pathway, e.g. with water. Neither $(CH_3)Pb^+$ nor $(CH_3)_2Pb$ have been isolated, but indirect evidence for both during reactions of Pb^{2+} with (I) in acetonitrile is strong [14]. In that study intermediate $(CH_3)_2Pb$ quantiatively forms Pb^0 and $(CH_3)_4Pb$ (eqn. 15): $$(CH3)2Pb \longrightarrow 0.5Pbo + 0.5(CH3)4Pb$$ (13) Spectral titrations of (I) with $(CH_3)_3Pb^+$ or $(CH_3)_2Pb^{2+}$ gave easily explainable results. The electrophile/complex (I) mol ratios are 1/1 for $(CH_3)_3Pb^+$ (eqn. 14) and about 1/2 for $(CH_3)_2Pb^{2+}$ (eqn. 14): $$(CH_3)_2Co(N_4)^+ + (CH_3)_3Pb^+ \longrightarrow (CH_3)_4Pb + (CH_3)Co(N_4)(H_2O)^{2+}$$ (14) $$2CH_{3})_{2}Co(N_{4})^{+} + (CH_{3})_{2}Pb^{2+} \longrightarrow (CH_{3})_{4}Pb + 2(CH_{3})Co(N_{4})(H_{2}O)^{2+}$$ (15) The above spectrophotometric results demonstrated that reactions of (I) with the three lead electrophiles are over in a few minutes, and that they occur by fairly reproducible stoichiometries. Subsequently we studied reactions of Pb²⁺ with (I) in the presence and absence of CH₃I and MnO₂, and reactions of (CH₃)₃Pb⁺ or (CH₃)₂Pb²⁺ with (I) in different lead(IV) electrophile/complex (I) ratios. Previous results show that iodomethane slowly reacts with Pb²⁺ by oxidative addition to form $(CH_3)_2Pb^{2+}$ [9-11]. In addition Dillard et al. [27] reported that MnO2 nodules may effect surface oxidation of Pb(II) to Pb(IV). For these reasons we designed a factorial experiment to study aqueous methylation of Pb(NO₃)₂ by (I). The factorial experiment showed separate and combined effects of complex (I), CH₃I, and MnO₂ (Table I). Only when Pb²⁺ and (I) were present (vials 4, 5, 7, and 10) did we detect (CH₃)₄Pb. The low yields of 0.04 to 0.12% emphasize the minor nature of this pathway. We attribute the lower (CH₃)₄Pb yield in the presence of MnO₂ to adsorption of Pb²⁺. No appreciable adsorption of (CH₃)₄Pb on MnO₂ occurred because a standard (CH₃)₄Pb solution with 20 µmol MnO₂ after 3 h had the same (CH₃)₄Pb head space concentration as that with no MnO₂. The presence of iodomethane did not significantly enhance (CH₃)₄Pb yields in experiments containing complex (I) and Pb2+. We detected no (CH₃)₄Pb in reactions containing only iodomethane and Pb(NO₃)₂. These last results are in agreement with observations by other workers of slow aqueous reaction between iodomethane and Pb(NO₃)₂ over 21 days and production of (CH₃)₂. Pb²⁺ as the only methyllead product [9, 11]. Methylation of Pb(NO₃)₂ to (CH₃)₄Pb probably proceeded via an electrophilic attack of Pb²⁺ on (I) and formation of the (CH₃)₂Pb intermediate (eqns. 11–13) in a manner similar to the reaction in acetonitrile [14]. Production of methane in 13 to 15% yield (Table I) is explainable on the basis of eqn. 16, $$(CH3)Pb+ + H2O \longrightarrow Pb(OH)+ + CH4$$ (16) because in the short reaction times of these experiments complex (I) did not appreciably decompose due to its reaction with water. The fate of the majority of the methyl transferred from (I) as observed in the spectrophotometric experiments is unknown. Possibly small amounts of non-volatile $(CH_3)_3Pb^+$ and $(CH_3)_3Pb^{2+}$ or formaldehyde formed by methyl radicals and oxygen are present. Table II shows that reactions of (I) with low concentrations of (CH₃)₂Pb²⁺ (41 to 82 µmol) and $(CH_3)_2Pb^+$ (84 to 168 µmol) give 33 to 65% yields of (CH₃)₄Pb and 12 to 22% yields of CH₄. Stoichiometric reactions (vials 1 and 4) produced lower amounts of (CH₃)₄Pb than reactions containing a two-fold excess of (I) (vials 2 and 3). Analysis of blanks containing only (CH₃)₂PbCl₂, (CH₃)₃PbCl or (I) yielded no detectable (CH₃)₄Pb. We used deuterium labelled [(CD₃)₂Co(N₄)]ClO₄·H₂O under similar reaction conditions to eliminate the possibility of dismutation reactions (egns. 7, 8) and to establish the origin of methyl groups in (CH₃)₄Pb. Identification of (CH₃)₃Pb(CD₃) and (CH₃)₂Pb(CD₃)₂ by mass spectrometry confirmed the mechanism of methyl transfer by electrophilic attack on the methyl groups of (I). Furthermore by comparison of TABLE I. Experimental Setup and Results of 23 Factorial Experiment for Methylation of Pb2+ a, b, c | Vial | Pb ²⁺ | (CH ₃) ₂ Co | CH ₃ I | MnO ₂ | CH ₄ | | (CH ₃) ₄ Pb | | |------|------------------|------------------------------------|-------------------|------------------|-----------------|---------|------------------------------------|---------| | | | | | | μg | % yield | μg | % yield | | 4 | + | + | + | + | 61.0 | 14.7 | 2.5 | 0.05 | | 5 | + | + | + | _ | 56.1 | 13.5 | 9.9 | 0.18 | | 1 | + | | + | + | d | | ND | | | 9 | + | _ | + | | d | | ND | | | 7 | + | + | _ | + | 54.5 | 13.1 | 2.1 | 0.04 | | 10 | + | + | _ | _ | 58.9 | 14.2 | 6.5 | 0.12 | | 8 | + | | _ | + | d | | ND | | | 6 | + | _ | _ | _ | d | | ND | | | 2 | | + | + | + | đ | | ND | | | 3 | _ | + | | + | đ | | ND | | ^aAbb. + and – denote presence and absence of reagent; ND means not detected at 1 ng cm⁻³ in a 0.5 cm³ sample, (CH₃)₂Co is {(CH₃)₂Co(N₄)}ClO₄·H₂O. ^bReactions in 50 cm³ 0.1 *M* KNO₃. ^cReagents added: 20.5 μmol Pb(NO₃)₂, 41.0 μmol {(CH₃)₂Co(N₄)}ClO₄·H₂O, 160 μmol CH₃I, and 20 μmol MnO₂. ^dNot analysed for. TABLE II. Methane and Tetramethyllead Yields from Methylation of $(CH_3)_2Pb^{2+}$ and $(CH_3)_3Pb^{+}$ by $\{(CH_3)_2Co(N_4)\}CIO_4\cdot H_2O.^a$ | Vial | Lead reagent, µmol | CH ₄ | | (CH ₃) ₄ Pb | | |------|---|-----------------|---------|------------------------------------|---------| | | | μg | % yield | μg | % yield | | 1 | 0.410 (CH ₃) ₂ PbCl ₂ | 1.8 | 12 | 40.1 | 47.0 | | 2 | $0.205 (CH_3)_2 PbCl_2$ | 3.4 | 22 | 27.6 | 65.0 | | 3 | 0.420 (CH ₃) ₃ PbCl | 3.1 | 20 | 53.4 | 61.4 | | 4 | 0.840 (CH ₃) ₃ PbCl | 2.6 | 18 | 57.8 | 33.3 | ^aAll reactions in 50 cm³ 0.1 M KCl with 0.940 μ mol {(CH₃)₂Co(N₄)}ClO₄·H₂O. intensities of ²⁰⁸₈₂Pb isotopes of m/e values 253 ((CH₃)₃Pb⁺) and 256 ((CH₃)₂Pb(CD₃)⁺) in the spectrum of (CH₃)₃Pb(CD₃) established that at least 90% of (CH₃)₃Pb⁺ present was a product of the fragmentation of (CH₃)₃Pb(CD₃) (intensity ratio 0.296; theoretical value 0.33). The present work demonstrates that methylation of Pb²⁺ may proceed in aqueous media via its electrophilic attack on (I) (a methyl cobalamin model) with resulting formation of (CH₃)₄Pb in environmentally significant yields. Methylation of (CH₃)₂-Pb²⁺ and (CH₃)₃Pb⁺ proceeds in high yields indicating that partially methylated lead species present in the environment as a result of methylation by carbocation donors or as decomposition products of spilled antiknock additives may be recycled by formation of toxic, air-transportable (CH₃)₄Pb. #### Acknowledgments We thank Ethyl Corporation for gifts of tetramethyllead and trimethyllead chloride. Partial support for this research was provided by National Science Foundation grant CEE 81-16960 and grant CHE 79-08399 for the Cary 219. ## References - P. T. S. Wong, Y. K. Chau and P. L. Luxon, Nature (London), 253, 263 (1975). - U. Schmidt and H. Huber, Nature (London), 259, 157 (1976). - 3 R. M. Harrison and D. P. H. Laxen, Nature (London), 275, 738 (1978). - 4 J. A. J. Thompson and J. A. Crerar, Mar. Pollut. Bull., 11, 251 (1980). - 5 B. Venugopal and T. D. Luckey, 'Metal toxicity in Mammals', Vol. 2, Plenum Press, New York, 1978, pp. 252-283. - 6 A. W. P. Jarvie, R. N. Markall and H. R. Potter, *Nature (London)*, 255, 217 (1975). - 7 K. Reisinger, M. Stoepller and H. W. Nürnberg, Nature (London), 291, 228 (1981). - 8 A. W. P. Jarvie, A. P. Whitmore, R. N. Markall and H. Potter, Environ. Pollut. (Series B), 6, 81 (1983). - S. Rapsomanikis, Ph.D. Thesis, Leicester Polytechnic, Leicester U.K., 1983. - I. Ahmad, Y. K. Chau, P. T. S. Wong, A. S. Carty and L. Taylor, *Nature (London)*, 287, 716 (1980). - 11 A. W. P. Jarvie and A. P. Whitmore, Environ. Tech. Lett., 2, 197 (1981). - 12 L. S. Snyder and S. M. Bentz, Nature (London), 296, 228 (1982). - 13 P. J. Craig, Environ. Tech. Lett., 1, 17 (1980). - 14 J. H. Dimmit and J. H. Weber, *Inorg. Chem.*, 21, 1554 (1982). - 15 J. S. Thayer, J. Environ. Sci. Health, 18A, 471 (1983). - 16 J. S. Thayer, *Inorg. Chem.*, 18, 1171 (1979). 17 S. F. Rhode and J. H. Weber, *Environ. Tech. Lett.*, 5, 63 (1984). - 18 A. W. P. Jarvie, A. P. Whitmore, R. N. Markall and H. R. Potter, Environ. Pollut. (Series B), 6, 69 (1983). - 19 P. S. Craig and S. Rapsomanikis, J. Chem. Soc. Chem. Comm., 114 (1982). - 20 P. J. Craig and S. Rapsomanikis, Inorg. Chim. Acta, 80, L19 (1983). - 21 S. C. Jackels, K. Farmery, E. K. Barefield, N. J. Rose and D. H. Busch, Inorg. Chem., 11, 2893 (1972). - 22 J. M. Murray, J. Colloid. Interfac. Sci., 46, 357 (1974). - 23 H. A. Flaschka, EDTA titrations An Introduction to Theory and Practice', Pergamon Press, New York, 1964, pp. 80-81. - 24 C. E. Freidline and R. S. Tobias, Inorg. Chem., 5, 354 (1966). - 25 J. J. Ciejka, M.S. Thesis, University of New Hampshire (U.S.A.), 1983. - 26 J. H. Dimmit and J. H. Weber, Inorg. Chem., 21, 700 (1982). - 27 J. G. Dillard, D. L. Crowther and J. M. Murray, Geochim. Cosmochim. Acta, 46, 755 (1982).